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Instability of a surface of discontinuity of velocity in 
a parallel uniform magnetic field 

By D. D. MALLICK 
Department of Applied Mathomatirs, Calcutta Univrrsi ty  

(Rrcrived 1'7 April 1968 and in rcvised form 15 Dcceriibcr 1962) 

The problem described by the title is investigated when the magnetic field is 
uniform and parallel to the velocity on the two sides of a surface of discontinuity 
of velocity in an electrically conducting inviscid fluid. The secular equation 
depends on two parameters ,8 and N ,  where p is the ratio of magnetic Reynolds 
number to dimensionless wave number and N is the ratio of the magnetic to the 
kinetic energy of the fluid. It is found that the flow is unstable for all values 
of p and N .  

1. Introduction 
The instability of the common surface in a uniforni flow of two fluids knou11 

as Helmholtz flow7 is well known. According to recent investigations a magnetic 
field has been found to exercise a strong stabilizing influence in many iinstahlc 
flows. Drazin (196Oa) has found that a jet of single fluid with a parallel mag- 
rictic field is unstable at zero magnetic Reynolds number, however large the 
magnetic field may be. In a later paper (1960b) he has confirmed that the flow 
in the two-fluid mode1 is unstable to long-wave disturbances for all finite magnetic 
Reynolds number. 

Michael (1955) fouiid the Helmholtz flow of perfectly conducting iiiviscid 
fluid in a parallel magnetic field to be stable or unstable according as N > or 
< 1 ,  where N is the ratio of the magnetic to the kinetic energy of the fluid. 
Drazin refers to an unpublished report and to an unpublished paper of I. C. T. 
Nisbet on the stability of Helmholtz flow of iuviscid fluids with finite conductivity 
in a parallel magnetic field which as far as the author knows has not yet appeared 
in print. The author has for some time been engaged in the study of the stability 
of Helniholtz flow under different conditions and the present paper sets forth 
some of his results on the stability of Helmholtz flow in two incompressible 
inviscid electrically conducting fluids with a uniforni magnetic field parallel 
to the flow, the velocities of the flow being equal and opposite. The boundary 
conditions considered in this paper are somewhat more extended than those 
taken into account by Michael, but are similar to those of Drazin (19606). 
The stability conditions are quite complex. A simple differentiation of these 
conditions is possible through a parameter p = RaTf/a,, where R,, is the magnetic 
Reynolds number and a, a quantity which may be called a dimensionless 
wave number. For instance we can distinguish between three cases : 

(i) /3 -$ a, when the flow is fouiid to be unstable for all N .  This contradicts 
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Michacl's result when = a. The reason for this discrepancy is probably due 
to the fact that the boundary conditions used in this paper and the order of the 
differential equation are different from those of Michael. 

(ii) /3 = 0, when it has been found that the motion is also unstable. 
(iii) 0 < /3 < co, when the motion is also found to be unstable for all AT. 

Further it has been found that the flow is unstable however large the magnetic 
field may be. An exception to the rule of stabilizing influence of magnetic fields 
is therefore confirmed in this paper. 

2. Formulation of the problem and the equation of hydromagnetic 
stability 

We take axes Oxyz such that Ox is parallel to the velocity and field vectors 
at  the interface and Oy is perpendicular to the interface, Oz being perpendicular 
to Ox and Oy on the interface. With reference to these axes the velocity and 
magnetic fields are given by 

H = (H,, 0, 0) for y < 0 and y > 0. 

\Ye shall consider the stability of the equilibrium of the interface to small two- 
dimensional disturbances in the (5, y)-plane. Following the usual methods of 
hydrodynamic stability, we shall substitute 

and 

into the liydromagnetic equations for a homogeneous incompressible iriviscid 
fluid of density p7 magnetic permeability p, electrical conductivity cr arid mag- 
netic diffusivity h = 1/4n;ucr, which are given by 

where m = -  p+-- 
P l (  "E) 

(4.1) 

( 2 . 2 )  

(2.3) 

(2.4) 

and p is the hydrodynamic pressure. The equilibrium of the intcrface in the 
undisturbed state is maintained by the continuity of total pressure (i.e. stress) 
across the surface, i.e. if mo is the value of w in the undisturbed state, then a, 
is continuous across the interface. In a small disturbance of the above type let 
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the disturbed a be w, + w, for y < 0, and w, + w1 for y > 0. Then we shall linear- 
ize equations (2.1)-(3.4) by neglectingthesquares andproductsof small quantities 
and write equations for y < 0 as follows: 

( 2 . 5 )  

( 2 . 6 )  

(2.7) 

(2.8) 

(2.9) 

(3.10) 

The continuity equation (2.9) and equation (9.10) suggest that there exist func- 
tions d!(x, y, t ) ,  ~ ( x ,  y, t )  such that 

uo = -a+/r/ay, 21,, = af ipx,  (2.11) 

ho = -axlay, I;, = axlax. (2.13) 

We shall now consider a disturbance of the type 

@ = Q(y) ei4s-d) x = o(y) eia(Z-cO , w0 = X(y) eia(s-cl), (3.13) 

where c = c, + ic,  is a complex wave velocity and a a positive wave number. If 
ultimately ci is found to be negative or zero the motion is stable, and for ci > 0 
the motion in unstable. With the help of (2.13), (2.11) and (2.12) equations (3.5)- 

( U  - C) $' - (,uH,/&T~) 8' = AS, (2.14) (3.8) become 

( U  - C) Q - (~H,/~T/I) 0 = X'/a2, (3.15) 

ia[(U-c)@'-H,$ ']  = h(B"-a20'), (2.16) 

ia[( u - c) 0 - I& $1 = A(@" - aV), (3.17) 

where accents denote differentiation with respect to y. Equation (2.16) is not 
independent as it can be deduced from (2.17) only by a single differentiation 
and so we drop it. Eliminating S between (3.14) and (3.15) we have 

(V-c) (02-a2)Q = (pHo/4Tp)(02-a2)9. (3.18) 

From (3.17) in( u - c) @ - h(D2- a2) 0 = iaHoQ, (3.19) 

where D = d/dy. (3.20) 

Eliminating Q between (3.18) and (2.19) we have 

(02-a2)0 1 
I 1. = ( 0 2  - a 2 )  p 2  - a2) @ + ia ("H" - 47rp( u - c)2 0 

4np( u - c) 
(2.21) 



3. Boundary conditions 
The conditions which must be satisfied on the common surface arc 
(i) the total pressure, p+,u€12/5n, must be continuous, i.e. X is continuous 

at the interface; 
(ii) thc normal velocity on each side must be equal to the normal \-c.locity of' 

the interface; 
(iii) the Maxwell equation V. H = 0 implies that the normal comj)oiit.nt of 

the magnetic field must be continuous ; 
(iv) the tangential component of the magnetic field must be continuous as 

the interface is not a current sheet. 
Let y = ?j(x, t )  be the displacement of the interface a t  time t after the disturbance. 
We shall assunie 11 to be small such that we can neglect (a~/I3x)~.  T2ic condition 
(i) implies that across the interface y = ~ ( x ,  i) 

(3.1) [( U - c) $' - (pH0/4np) 0'1 is continuous. 

The condition (ii) implies that on y = ~ ( z ,  t )  

uaqpx = vul .t uallpx = aTljat, 
210- uiCL)j, = 21,+ uia?] = -iac?l, 

( U + C ) V "  = -(rTi-c)v, 011 y = q(n* , t ) .  

to- H*(?q/P.r) =/l..I - Ho('7'//07*r), 

i.e. 

since y(x, t )  oc ~ i a ( ~ - C l ) .  Hence we have 

The condition (iii) iniplies that on y = ?/(,I-, t )  

Or k" = kl. 
Hence we can say that 

0(y) is continuous on y = ?/(.r, t ) ,  

The condition (iv) implies that, on 

y = 7/?(,r, t ) ,  h" = I r , ,  

or we can say that 0' is continuous on 

y = ? ] ( X , t ) .  

The disturbance must be bounded at infinity. This implies 

( 3 . 2 )  

(3.3) 

(3.4) 

(3.5) 

4. Solution of the problem 
!rhe solution of the differential equation (2.21) is given by 

0 = 0, + 0 2 ,  (4.1) 

whcre 0,  and 8, satisfy the following differential equations 
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of which the solutions are 

wherc 

h = 1p77pT. (4 5 )  

The boundary condition (3.5) for the y < 0 solution suggests that B,, = B, = 0. 
Hence the solution for 13 becomes 

0 = 0, +0, = Aoeau+A,e(7n-irf)u (m > 0). (4.6) 

From (2.lSj) after making use of (4.4) and (4.6) we have 

(3 .7 )  

The corresponding values of 0 and Q, for y > 0 which can be obtained from those 
of B and $ for y < 0 (i.e. from (4.4) to (4.7)) simply by replacing U by - 7 J  are 
given by 

0 = ,4‘e-3U+~4‘e-(”’-in’)” 0 1 (in’ > o), (4.8) 

where ( ‘4 .10)  

Since ]Ao],  /All ,  IAhI, IA;J are small, we can replace ek”’l, e(7n--rn)ji, e--(m’-in’)q, by 1.  
This means that when we determine the unknown constants A,, Ah, A,, A; 
by using the boundary conditions a t  the interface y = 7 we take the boundary 
conditions (3.1)-(3.4) a t  y = 0 (i.e. a t  the undisturbed position of the interface) 
instead of a t  y = ~ ( x ,  t ) .  Therefore the boundary conditions (3.1)-(3.4) a t  
y = 0 give the following relations between the unknown constants A,, A,, L4i, 

(4.11) 
A;: 

- 

*4()+A1 = A;+A;, (4.13) 

A,a+AA,(m-in) = -A;a-A;(nz’--in’). (4.14) 

For a non-trivial solution to exist we have on eliminating the constants A,, 
-Al, A;, A; from (4.11) to (4.14) 

(4.15) 
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We shall now introduce dimensionless quantities a,, cl, R,, N and p defined by 

C I ~  = el, c1 = c / U ,  R,, = Ul/h ,  N = ,U(cag/(4npU2), p = R,,/a,, (4.16) 

where 1 is a characteristic length. In  terms of these dimensionless parameters 
the secular equation (4.15) becomes 

8ILlc2, = ( N  - 1 - c2,) [( 1 + c1)2 ( N  - (1 - C1)2 j  (a’ - ib’) 

+ (1 - c1)2(N - (1 + c ~ ) ~ )  ( a  - i b ) ] ,  (4.17) 
or equivalently 

o = {A~- (1 -c l )2 ) {N- ( l+c l )2 ) [  n ( l + C ; )  

il’- 1 -c;+ at -ib’ + 1 n - i b +  I 
(4.17 n )  

(‘ ”)’] (4.18) 

The signs before the square roots in the expression for a - ib and a‘ - ib’ will be 
taken in such a way that a and a‘ become positive. Before considering the general 
case we shall first of all study three particular cases namely (i) when /” --f 00, 

(ii) when N -+ 00 and (iii) when 

where 

a- ib  = (nz -in)/ a = 11 - {ip/(1 -cl)j{N- ( 1  - c ~ ) ~ } ] !  
(b’ - ib‘ = (9%’ - in’)/ CI = 11 + {;pi( 1 + c,)} ( N  - (1 + ~~)‘)]k (a’ > 0). 

= 0. 

Case (i) ,whe,n p --f co 
(a )  ForJinite N .  In  this case (4.18) and (4.17) respectively take the following 

forms : 

with d > 0, d‘ > 0; and 

o = ( N -  1 -c;) [(I + c l ) o ( N -  ( 1  -cl)zj (&-id) + (1 - C ~ ) ~ ( N  - (1 +cJ2} (d  -ie)l 

= ( N  - 1 -c:) ( N  - (1 + c ~ ) ’ ) { N -  ( 1  -~1) ’ )  (4. no) 

which can be obtained directly from (4.17a). The factor 

( N  - 1 - c?) (N - (1 + c1)2) (N  - (1 - c1)2) 

when equated to zero gives six roots for cl, i.e. 

c1 = k ( N i  5 I), 5 ( N -  1)4, (4.21) 

which can be arranged as follows 

To find out t,he root’s of 

{i( 1 + cl)/(d’ - ie’)) - (i(1- cl)/(d - ie)) = o 
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for cl we write it in the form 

(1  - cl)/(d - i e )  = (1  + cl)/(d’ - ie’) 

and square both sides to give 

(1  - c1)3 [ N  - (1 + c1)2] = (1 + c1)3 [( 1 - c1)2 - N ] .  

The roots of this equation are 

c1 = +[1+$Ni- ($N2+4N)i ] i ,  

which can be expressed in the following way 

c1 = +[l++N+(gN2+4N)*]t for N <, =, > 1; ‘  

c1 = 2 II1 + * N -  ($iV2+4N):]B for N < 1 

= * i[(pN2 + 4N): - 1 - “4 for N 1. 
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(4.31 b) 

(4.22) 

( 4 . 2 2 ~ ~ )  

Of the four roots given by (4.25a) the roots which satisfy equation (4.21b) 
in such a way that d and d‘ become positive are given by (verified by giving 
numerical values to Ar, namely N = 0.1, 0-2, 0-5, 1, 2, 4,  6) 

c1 = i [ 1 + $ N - ( $ N 2 + 4 N ) * ] i  for N < 1, 

c1 = +i[(zN2+4N)4-1-$N]4- for N 3 1. 
(4.23) I- 

( 6 )  Wh,en il: is notJinite but comparable with / j  as jl a m. Sn this case equation 
(4.1 7)  is modified as follows 

0 = ( 1  - el)2 (f- ig) + (1  + el)% ( f ’  - ,ig’), (4.24) 

(4.34 a )  

(4.25) 

where 

withf > 0, f ’  > 0, and 

Removing the square roots which occur in f - ig and f’ - iy’ of (4.24) by squaring 
we obtain the equation 1 + 3c: = 0 of which the roots for c, are 

f -  i g  = L- [ - iy/( 1 - c l p ,  f’ - ig’ = * [iy/( 1 + c1)]4 

y = /?/N = ~~,uUO/CCA’. 

c1 = + i / J 3 .  (4.26) 

Of the two roots given by (4.%), satisfying conditions f > 0, f‘ > 0, only om 
root satisfies equation (4.24) and is given by 

c1 = +i/43. (4.27) 

Case (ii) when N --f co 

In this case equation (4.17) reduces to (4.24) where y occurring in f - ig and f ’  - ig‘ 
is to be replaced by p and as before c1 = + i / 2 / 3  will satisfy the modified secular 
equation with f > 0, f’ > 0 (after replacing y by p). 

Case (iii) when /3 = 0 

In this case a -ib = 1 = a’ - ib‘ and equation (4.17) becomcs 

0 = (1  + c;) ( N  - (1  - c1)2) {X  - ( 1  + c,)”, 

which gives c1 = *(N4  * 1). *i. (4.29) 

(4.28) 

This corresponds to  the classical solution when there is 110 magnetic field (i.e. 
RJf = N = 0). 

Fluid Moch. 16 13 
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General case 

The roots of the secular equation (4.17 a)  will be determined by the following 
equations 

( N  - (1 - c1)2) ( N -  (1 + cJ2] = 0 (4 .30 )  

and 2( 1 + c?) ip( 1 + cl) ip( 1 -cl) = 0. - 
N - 1 - cq+n‘ - ib’+ 1 n - ib  + 1 

(4.31) 

The roots of equation (4 .30)  are given by c1 = & ( N :  & 1). We shall study equa- 
tion (4.31) and see how far i t  is possible to discuss the behaviour of its roots with- 
out laborious numerical calculation. Removing the square roots which occur in 
a- ib  and a‘-ib‘ given by (4.18) by repeated squaring and putting c1 = ix, 
we get an algebraic equation of 16th degree for x with real coefficients containing 
N and p as parameters, 

ppv - I + 9 ) 4  rx4+ (3s + 9) 2 2  - ( N  - 1 )y 
+8,8A7x(N- 1+x2)2[-N2(3x2-1)(1-x2)+(l-x4)2+~N(1+r2)2(2x~- I)] 

- [64N4x4 - 16N2x2( 1 + x’)’ ( N  - 1 + x’)’] = 0 (4.35) 

(when f l  --f co for finite and infinite N as we have considered in case (i), equation 
(4 .32 )  reduces to (4.22), x2- (1 - N )  = 0 and the equation 3x2-  1 = 0. respec- 
tively). Equation (4 .33 )  is a quadratic in ,!I whose roots are given by 

- -  - - - [ -  4Nx 
= ( N  - I-+ . P ) 2  [x4 +-(3N $- 2 )  x2 - ( N  - 1)]2 

2 )  :r4 

+ ( 3 P +  1)xZ- ( N -  l)”))e] 

= J(T, X), say. (4.33) 

(The eigen values c1 = & (N6 & 1 )  correspond to null eigen vectors. This was 
pointed out by Prof. S. Chandrasekhar.) 

= f(x, N )  in the ( x ,  /3)-plane has a cusp at (i) N > 1 .  In this case the curve 

[xo = { ( i P +  4 N ) :  - 1 - XN)):, a]. 

The curve f l  = j ( x ,  2) has been drawn in figure 1. For other values of N the 
corresponding curves are similar in nature to that for N = 2. Hence from the 
nature of the curve = f(x, 3 )  we can say that equation (4.39) for x has two real 
roots beyond a particular value ofp, say,!?o, and has four real roots for 0 < /I 6 Po. 
Further i t  can be proved that equation (4.32) has no purely imaginary root. 
Hence the remaining roots of equation (4 .32 )  are complex. Of the real roots 
only one root, which lies in the closed interval xo < x < 1 with the corresponding 
p. satisfies equation (4.31) with n > 0, a’ > 0. This result has been verified for 
iv = 9 .  

(ii) AT = 1 .  In  this case the curve /.’ = f ( x ,  1) in the (x, P)-plane having a cusp 
at (0, a) has been drawn in figure 1. From the figure we see that in this case 
the equation for x has two real roots (one positive and one negative) for any 
particular value of /3 and it  has been found that both the roots, which lie in the 
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closed interval - 1.3496 < x < 1 ,  with the corresponding /3 satisfy equation 
(4.31) with a > 0, a‘ > 0. The remaining roots are all complex. 

(iii) N < 1. In this case the curve p = f (x, N )  in the (x, p)-plane has two cusps 
at ( f (1 - N ) & ,  co). The curve p = f ( x ,  +) has been drawn in figure 1. For other 
values of N the corresponding curves are similar in nature to that of N = &. 
From the nature of the curve /3 = f ( x ,  3) we can say that equation (4.32) for x 

has four real roots (two positive and two negative) for a particular finite value 
of /3. The remaining roots are all complex. For a particular value of /3 only two 
real roots (one positive and one negative) which are obtained from the part 
of the curve /3 = f (x, N )  passing through the points ( f 1 ,  0) and ( f ( 1  - N)g, a) 
satisfy equation (4.31) with the conditions u > 0, a,’ > 0. 

5.  Conclusion 
I n  this section we summarize the results obtained by us in $4. As stated 

before, the dimensionless complex wave velocity c1 = clr + ic lL determined by 
the secular equation (4.17) or ( 4 . 1 7 ~ )  containing /3 and N as parameters will 
give us information regarding stability. If cli is zero or negative the motion will 
be stable, otherwise (i.e. if cli  is positive) the motion will be unstable. We havc 
the following cases: 

( a )  /? --f a, then (i) for all finite N (the ratio of magnetic to kinetic energy of 
the fluid), (4.21a) and (4.23) show that the motion in unstable, (ii) when N be- 
comes infinite of the order of /3, (4.37) shows that the motion is also unstable. 
/I may tend to infinity either by + m keeping a1 fixed, or by a1 - 0, R,, 
remaining fixed. The former case (a = co) was considered by Michael whose 
result has been stated in the Introduction. In  this case we conclude that our 
results contradict Michael’s results for N > 1.  The latter case ( i s .  Rllf remaining 
fixed, a1 --f 0) corresponds to long-wave disturbances. 

( b )  /3 = 0, i.e. when R2,1 = 0 (a = 0 ) ,  then (4.39) shows that the motion is 
always unstable. 

(c) 0 < B < a, the motion is always unstable for all N .  
13-3 
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(a) N -+ co, then from the result obtained in case (ii) we conclude that the 
motion is unstable for all p. Hence we can say that the Helmholtz flow is also 
unstable however large the magnetic field may be. 

The author wishes to thank Prof. N. R. Sen and Dr T. (2. Roy for the benefit of 
discussion with them. The author also wishes to thank Dr P. (2. Drazin for his 
helpful criticism of this paper. 
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